Abstract

Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call