Abstract
In this paper we develop a formalism to evaluate wave functions in momentum and coordinate space for the resonant states dynamically generated in a unitary coupled channel approach. The on shell approach for the scattering matrix, commonly used, is also obtained in Quantum Mechanics with a separable potential, which allows one to write wave functions in a trivial way. We develop useful relationships among the couplings of the dynamically generated resonances to the different channels and the wave functions at the origin. The formalism provides an intuitive picture of the resonances in the coupled channel approach, as bound states of one bound channel, which decays into open ones. It also provides an insight and practical rules for evaluating couplings of the resonances to external sources and how to deal with final state interaction in production processes. As an application of the formalism we evaluate the wave functions of the two $\Lambda(1405)$ states in the $\pi \Sigma$, $\bar{K} N$ and other coupled channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.