Abstract

The asymptotic behaviour of many locally branching epidemic models can, at least to first order, be deduced from the limit theory of two branching processes. The first is Whittle's (1955) branching approximation to the early stages of the epidemic, the phase in which approximately exponential growth takes place. The second is the susceptibility approximation; the backward branching process that approximates the history of the contacts that would lead to an individual becoming infected. The simplest coupling arguments for demonstrating the closeness of these branching process approximations do not keep the processes identical for quite long enough. Thus, arguments showing that the differences are unimportant are also needed. In this paper we show that, for some models, couplings can be constructed that are sufficiently accurate for this extra step to be dispensed with.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.