Abstract

In this article, the coupling between swelling and shear in liquid saturated slit nanopores is studied using molecular dynamics simulations on Lennard-Jones systems. First, the consistency of the simulations using thermodynamics and direct routes is validated when dealing separately with swelling and shear. Then, the coupling between swelling and shear is explored by displacing the solid walls in one direction while letting them move freely on the other. Results indicate that shear can induce swelling and vice versa because of the confined fluid phase structure. This phenomenon, which is neglected in poromechanics modeling, may be non-negligible in highly structured microporous systems, such as clays. It implies that the response to a variation in the external load can be a combination of volumetric and shear deformations, because of the fluid. Finally, we explore the behavior induced by solid walls moving at a constant velocity. Interestingly, when the wall velocity exceeds the swelling velocity, the instantaneous states of the system are no longer at equilibrium and the averaged pore width slightly increases with increasing shear rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.