Abstract

Coupling heterostructures to synergistically improve the light adsorption and promote the charge carrier separation has been regarded as an operative approach to advance the photocatalytic performances. However, it is still challenging to construct heterostructures with appropriate optical properties and interfacial energy structures at the same time. In this work, a Z-scheme g-C3N4/rGO/MoS2 ternary composite photocatalyst is successfully synthesized via an effective hydrothermal method. The as-synthesized g-C3N4/rGO/MoS2 composite photocatalyst exhibited significant improvement for visible light absorption and boosted the separation efficiency of photoinduced electron-hole pairs. The g-C3N4/rGO/MoS2 system exhibited optimum visible-light-induced photocatalytic activity in hydrogen (H2) from water splitting and degrading pollutant rhodamin B (RhB), which is 22 times and 5 times higher than that of pure g-C3N4, respectively. The excellent photocatalytic activities are attributed to the synergetic effects of coupling rGO, g-C3N4, and MoS2 ternary structures to the composite photocatalyst. These combinations of intimate two-dimensional nanoconjugations can effectively inhibit charge recombination and accelerate charge transfer kinetics, forming a Z-scheme-assisted photocatalytic mechanism, thereby exhibiting superior photocatalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.