Abstract
Transmission lines, crucial for power and urban infrastructure, are vulnerable to wind damage; this paper addresses research gaps in tower-line systems under multi-dimensional wind loads and aerodynamic damping. By incorporating multi-dimensional aerodynamic damping and conducting comprehensive multi-dimensional wind response analysis, it examines parameters like ground roughness and wind attack angles that significantly influence the tower responses, offering a holistic understanding of system behavior under real wind conditions. This study analyzes wind-induced responses of a large-span Chinese transmission line using a finite element model (FEM) with three spans and two towers. This paper conducts modal analyses of a single tower and the tower-line system, comparing their vibration characteristics under one- and multi-dimensional wind loads generated via harmonic superposition methods. Incorporating the multi-dimensional aerodynamic damping, the impact of wind velocity, ground roughness, and wind attack angle on the tower-line system is analyzed through time-history results and gust response factor. The findings reveal that under the premise of multi-dimensional aerodynamic damping, multi-dimensional wind loads significantly amplify responses compared to one-dimensional loads. As wind speed, ground roughness, and wind attack angle increase, responses are elevated, causing complex changes in gust response factors, underscoring the importance of considering multi-dimensional wind loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.