Abstract

The urgent demand for high security and high energy density all-solid-state batteries has generated a strong interest in polyethylene oxide (PEO)-based solid polymer electrolyte (SPE). However, devising a SPE with a high ionic conductivity without sacrificing mechanical properties remains a critical challenge. Herein, an interpenetrating polymer network electrolyte is designed by chemical grafting coupling, where 2D boron nitride nanosheets and poly(ethylene glycol)diacrylate were coupled by a silane coupling agent. A considerable intensification of mechanical strength has been achieved for the SPE via the graft-coupling strategy, and the interpenetrating network with BNNs leads to the generation of amorphous regions for fast Li-ion immigration. The electrolyte integrates high mechanical strength with enhanced room-temperature ionic conductivity, enabling a long-cycle stability dendrite-free Li||Li symmetrical cell, and prominent cyclic performance is demonstrated in full cells at room temperature. Our approach provides a broader promise for the practical applications of solid-state batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.