Abstract

Biochemistry Gene expression requires messenger RNAs (mRNAs)—DNA-derived blueprints of genes—to be translated by protein-producing ribosomes. The levels of mRNAs are tightly regulated, in part by controlling their half-lives. In eukaryotic cells, mRNA half-life is largely linked to translational efficiency, but the mechanism underlying this link has remained elusive. Buschauer et al. used cryo–electron microscopy and RNA sequencing to show how a key regulator of mRNA degradation, the Ccr4-Not complex, monitors the ribosome during mRNA translation. They found that the Not5 subunit directly binds to a ribosomal site exposed specifically during inefficient decoding, thereby triggering mRNA degradation. Analysis of mutants revealed the importance of this sensing mechanism for mRNA homeostasis. Science , this issue p. [eaay6912][1] [1]: /lookup/doi/10.1126/science.aay6912

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.