Abstract

Using three-dimensional rigid-viscoplastic finite element method (FEM), a coupling multivariable numerical simulation model for steel plate rolling has been established based on the physical metallurgy microstructural evolution rule and experiential equations. The effects of reduction, deformation temperature, and rolling speed on the deformation parameters and microstructure in plate rolling were investigated using the model. After a typical rolling process of steel plate 16Mn is simulated, the strain, temperature, and microstructure distributions are presented, as well as the ferrite grain transformation during the period of cooling. By comparing the calculated ferrite grain sizes with measured ones, the model is validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.