Abstract

ABSTRACT The long-term evolution of hydrogen-dominated atmospheres of sub-Neptune-like planets is mostly controlled to by two factors: a slow dissipation of the gravitational energy acquired at the formation (known as thermal evolution) and atmospheric mass-loss. Here, we use mesa to self-consistently couple the thermal evolution model of lower atmospheres with a realistic hydrodynamical atmospheric evaporation prescription. To outline the main features of such coupling, we simulate planets with a range of core masses (5–20 M⊕) and initial atmospheric mass fractions (0.5–30 per cent), orbiting a solar-like star at 0.1 au. In addition to our computed evolutionary tracks, we also study the stability of planetary atmospheres, showing that the atmospheres of light planets can be completely removed within 1 Gyr and that compact atmospheres have a better survival rate. From a detailed comparison between our results and the output of the previous-generation models, we show that coupling between thermal evolution and atmospheric evaporation considerably affects the thermal state of atmospheres for low-mass planets and, consequently, changes the relationship between atmospheric mass fraction and planetary parameters. We, therefore, conclude that self-consistent consideration of the thermal evolution and atmospheric evaporation is of crucial importance for evolutionary modelling and a better characterization of planetary atmospheres. From our simulations, we derive an analytical expression between planetary radius and atmospheric mass fraction at different ages. In particular, we find that, for a given observed planetary radius, the predicted atmospheric mass fraction changes as age0.11.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call