Abstract

Phenolic wastewater containing phenol and 4-chlorophenol pose a risk to the environment and to human health. Treating them using chemical-biological coupling method is challenging. In this study, manganese oxidizing bacteria (MnOB) were enriched in moving bed biofilm reactor (MBBR) using synthetic phenol wastewater (800 mg L−1) to facilitate in situ production of biogenic manganese oxides (BioMnOx) after 90 days of operation. Then, 4-chlorophenol (4-CP) was added to the MBBR to simulate mixed phenolic wastewater. Comparing the MBBR (R1) without feeding Mn(II) and the MBBR with BioMnOx (R2) production, R2 exhibited robust phenol and 4-CP removal performance. 16S rRNA gene sequencing was employed to determine the microbial community. Subsequently, a batch experiment demonstrated that partly purified BioMnOx does not exhibits a capacity for phenol removal, but can efficiently remove 4-CP. Interestingly, 5-chloro-2-hydroxymuconic semialdehyde was found in the products of 4-CP degradation, which was the unique product of 4-CP degradation by catechol 2,3-dioxygenase (C23O). In both reactors, only catechol 1,2-dioxygenase (C12O) activity from microbes can be detected, indicating that the existence of BioMnOx provide an alternative pathway in addition to microbe driven 4-CP degradation. Overall, MBBR based MnOB enrichment under high phenol concentration was achieved, and 4-CP/phenol removal can be accelerated by in situ-formed BioMnOx. Considering the C23O-like activity of BioMnOx, our results suggest a new coupling strategy that involves nanomaterials and a microbial consortium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.