Abstract

The spatial pattern of surface fuelbeds in fire-dependent ecosystems are rarely captured using long-standing fuel sampling methods. New techniques, both field sampling and remote sensing, that capture vegetation fuel type, biomass, and volume at super fine-scales (cm to dm) in three-dimensions (3D) are critical to advancing forest fuel and wildland fire science. Such scales are particularly important for some computational fluid dynamics fire behavior models that operate in 3D and have implications for wildland fire operations and fire effects research. This study describes the coupling of new 3D field sampling data with terrestrial laser scanning (TLS) data to infer fine-scale fuel mass in 3D. We found that there are strong relationships between fine-scale mass and TLS occupied volume, porosity, and surface area, which were used to develop fine-scale prediction equations using TLS across vegetative fuel types, namely grasses and shrubs. The application of this novel 3D sampling technique to high resolution TLS data in this study represents an advancement in producing inputs for computational fluid dynamics fire behavior models that will improve understanding fire-vegetation feedbacks in highly managed fire-dependent ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.