Abstract
This research explores the geomechanical challenges associated with gas hydrate extraction in submarine slope zones, a setting posing a high risk of significant geological calamities. We investigate slope and wellbore deformations driven by hydrate decomposition within a subsea environment. Utilizing Abaqus, a fluid-solid-thermal multi-field coupling model for gas hydrate reservoirs was created. Hydrate decomposition during drilling is minimal, resulting in minor formation deformation near the wellbore. However, a year of hydrate production caused a maximum displacement of up to 7 m in the wellbore and formation, highlighting the risk of submarine landslides. This indicates the need for meticulous surveillance of formation subsidence and wellhead equipment displacement. In the aftermath of a hydrate-induced submarine landslide, both the hydrate layer and the overlying strata descend together, inflicting considerable damage on the formation and wellbore. Our study presents a holistic examination of the interplay between environmental geomechanics risks and engineering structure risks for submarine slope instability and wellbore stability during hydrate development, providing crucial insights for enhancing safety measures in hydrate drilling and production, and ensuring wellbore stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.