Abstract
For solving elliptic boundary value problems with singularities, we have proposed the combined methods consisting of the Ritz-Galerkin method using singular (or analytic) basic functions for one part,S2, of the solution domainS, where there exist singular points, and the finite element method for the remaining partS1 ofS, where the solution is smooth enough. In this paper, general approaches using additional integrals are presented to match different numerical methods along their common boundary Г0. Errors and stability analyses are provided for such a general coupling strategy. These analyses are important because they form a theoretical basis for a number of combinations between the Ritz-Galerkin and finite element methods addressed in [7], and because they can lead to new combinations of other methods, such as the combined methods of the Ritz-Galerkin and finite difference methods. Moreover, the analyses in this paper can be applied or extended to solve general elliptic boundary value problems with angular singularities, interface singularity or unbounded domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.