Abstract

Spin-mechanics studies interactions between spin systems and mechanical vibrations in a nanomechanical resonator and explores their potential applications in quantum information processing. In this review, we summarize various types of spin-mechanical resonators and discuss both the cavity-QED-like and the trapped-ion-like spin-mechanical coupling processes. The implementation of these processes using negatively charged nitrogen vacancy and silicon vacancy centers in diamond is reviewed. Prospects for reaching the full quantum regime of spin-mechanics, in which quantum control can occur at the level of both a single spin and a single phonon, are discussed with an emphasis on the crucial role of strain coupling to the orbital degrees of freedom of the defect centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call