Abstract

Modelling the density of an infectious disease in space and time is a task generally carried out separately from the diagnosis of that disease in individuals. These two inference problems are complementary, however: diagnosis of disease can be done more accurately if prior information from a spatial risk model is employed, and in turn a disease density model can benefit from the incorporation of rich symptomatic information rather than simple counts of presumed cases of infection. We propose a unifying framework for both of these tasks, and illustrate it with the case of malaria. To do this we first introduce a state space model of malaria spread, and secondly a computer vision based system for detecting plasmodium in microscopical blood smear images, which can be run on location-aware mobile devices. We demonstrate the tractability of combining both elements and the improvement in accuracy this brings about.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.