Abstract

AbstractThis paper describes the theory behind a recent extension of a two-dimensional (2D) boundary-element code, FRACOD, to enable simulations of either coupled fracture (F)-hydraulic (H) processes or coupled F-thermal stress (T) in rocks. This extension is the next step in the ongoing development of a three-dimensional (3D) fracture mechanics code that couples F-H-T processes and predicts fracture initiation and propagation under thermal and hydraulic loadings. The original FRACOD simulated both mode I (tensile) and mode II (shear) fracture propagation that only involved mechanical processes in rock masses. In this study, the F-T coupling in FRACOD was developed using an indirect boundary-element method based on fictitious heat sources. The F-H coupling in FRACOD focused on fluid flow in explicit rock fractures using a cubic law. An explicit iteration method is used to simulate the fluid flow process in fractures and its interaction with mechanical deformation. Several verification and application case...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call