Abstract
Shewanella oneidensis MR-1, as a model exoelectrogen with divergent extracellular electron transfer (EET) pathways, has been widely used in microbial fuel cells (MFCs). The electron transfer rate is largely determined by riboflavin (RF) and c-type cytochromes (c-Cyts). However, relatively low RF production and inappropriate amount of c-Cyts substantially impede the capacity of improving the EET rate. In this study, coupling of riboflavin de novo biosynthesis and c-Cyts expression was implemented to enhance the efficiency of EET in S. oneidensis. First, the upstream pathway of RF de novo biosynthesis was divided into four modules, and the expression level of 22 genes in above four modules was fine-tuned by employing promoters with different strengths. Among them, genes zwf*, glyA, andybjU which exhibited optimal RF production were combinatorially overexpressed, leading to the enhancement of maximum output power density by 166%. Second, the diverse c-Cyts genes were overexpressed to match high RF production, and omcA was selected for further combination. Third, RF de novo biosynthesis and c-Cyts expression were combined, resulting in 2.34-fold higher power output than the parent strain. This modular and combinatorial manipulation strategy provides a generalized reference to advance versatile practical applications of electroactive microorganisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.