Abstract

Soil respiration and extracellular enzyme activity are important components of the material cycle of mountain ecosystems and play key roles in maintaining ecosystem functions. To explore the coupling relationship between soil functions and environmental factors, the soil functional indicators, environmental factors, and effects of altitude on the soil function of 36 soil samples from 12 altitudes of the Meili Mountain were analyzed. The results showed that there were significant differences in soil respirations and enzyme activities among altitudes of Meili Mountain, and high-altitude areas had higher soil functions. Soil functions increased with altitudinal difference. PCA analysis showed that the first three axes explained 56.7%, 17.4%, and 8.7% of the variance in soil functional elevation change, respectively, indicating that the functional changes related to carbon and phosphorus were higher than those related to nitrogen. There were significant correlations between environmental factors and soil functional indicators; soil function indicators had stronger correlations with soil physicochemical properties than with climatic factors. Altitude mainly affected soil function indirectly by affecting soil physicochemical properties and climatic factors. These results have great scientific significance for improving the understanding of the material cycle and ecological function of the Meili Mountain ecosystem and provide an important reference for in-depth study of the altitude distribution pattern and evolution characteristics of the soil function of the mountain ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.