Abstract

Circadian rhythms (approx. 24 h) show the robustness of key oscillatory features such as phase, period and amplitude against external and internal variations. The robustness of Drosophila circadian clocks can be generated by interlocked transcriptional-translational feedback loops, where two negative feedback loops are coupled through mutual activations. The mechanisms by which such coupling protocols have survived out of many possible protocols remain to be revealed. To address this question, we investigated two distinct coupling protocols: activator-coupled oscillators (ACO) and repressor-coupled oscillators (RCO). We focused on the two coupling parameters: coupling dissociation constant and coupling time-delay. Interestingly, the ACO was able to produce anti-phase or morning-evening cycles, whereas the RCO produced in-phase ones. Deterministic and stochastic analyses demonstrated that the anti-phase ACO provided greater fluctuations in amplitude not only with respect to changes in coupling parameters but also to random parameter perturbations than the in-phase RCO. Moreover, the ACO deteriorated the entrainability to the day-night master clock, whereas the RCO produced high entrainability. Considering that the real, interlocked feedback loops have evolved as the ACO, instead of the RCO, we first proposed a hypothesis that the morning-evening or anti-phase cycle is more essential for Drosophila than achieving robustness and entrainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.