Abstract
Engine health monitoring has been an area of intensive research for more than three decades. Numerous methods have been developed with the goal of performing an accurate assessment of the engine condition. It is generally accepted that a practical implementation of a monitoring tool will rely on a combination of several techniques. In this framework, the present contribution proposes an original approach for coupling two diagnostic tools in order to enhance the capability of an engine health monitoring system. One tool is based on a principal component analysis scheme and the other is based on a Kalman filter technique. The three methodologies are compared and the benefit of the combined tool is demonstrated on simulated fault cases which can be expected in a commercial turbofan layout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.