Abstract

The undrained shear behaviour of sands has been a key topic after the devastating geo-disasters during the 1964 Niigata Earthquake in Japan. Extensive geo-technical soil tests, especially undrained triaxial compression tests, have revealed that the liquefaction phenomenon was the major cause for the disaster expansions. To numerically reproduce the liquefaction phenomenon, the pore-water pressure was coupled with a distinct element method. In this model, the dynamic changes in pore-water pressure were taken into consideration by the changes in volumetric strain and modulus of compressibility of water in the respective measurement spheres. Fluid-flows among the measurement spheres were controlled by Darcy’s law. The effective stress paths and steady state strengths in undrained triaxial compression tests associated with the wide ranges of initial void ratio were investigated. The effective mean stresses of medium-dense to dense numerical specimens at the steady state were negatively proportional to the initial void ratio. Loose numerical specimens reproduced quasi-liquefaction with the effective mean stresses that were less than 25% of the initial value. The medium-dense numerical specimens reproduced the phase transformation that was a typical characteristic of granular materials. The rolling restraints did not much influence of the effective angle of internal friction but strongly affected pore-water pressure behaviour within a certain range of initial void ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call