Abstract

Uptake studies with 22Na and 36Cl were performed in cultured bovine pigmented ciliary epithelial cells (PE) to investigate interdependence of Na+ and Cl- transport. (1) 22Na uptake into NaCl depleted cells was stimulated by Cl-. This stimulation was abolished by the simultaneous application of amiloride (1 mM) and bumetanide (0.1 mM), indicating two independent mechanism for Cl- stimulated Na+ uptake: loop diuretic sensitive Na+/Cl- symport and an indirect stimulation of Na+/H+ exchange by Cl-. The latter component of Cl- stimulated Na+ uptake was HCO3- dependent. (2) 36Cl uptake was increased by extracellular Na+. Na+-stimulated Cl- uptake also consisted of two components. One was bumetanide sensitive and the other was blockable by amiloride and partly inhibited by the carbonic anhydrase (CA) inhibitor methazolamide (0.1 mM). (3) Homogenized PE cells were tested for biochemical CA activity using an electrometric method. The cytoplasmic as well as the membrane fraction contained specific CA activity. (4) A model is presented for Na+ and Cl- transport into PE: in addition to Na+/Cl- symport, Na+/H+ and Cl-/HCO3- double exchange may operate in the ciliary epithelium. The latter mechanism provides NaCl uptake into the cell in exchange for H+ and HCO3-, which recycle as CO2 across the membrane. This recycling of CO2 and HCO3-/H+ (and hence indirectly NaCl uptake) is facilitated by the cooperation between membrane bound and cytoplasmic CA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.