Abstract

Activation of the protein tyrosine kinase receptors requires the coupling of ligand binding to a change in both the proximity and orientation of the single transmembrane (TM) helices of receptor monomers to allow transphosphorylation of the receptor kinase domain. We make use of peptides corresponding to the TM and juxtamembrane (JM) regions of the fibroblast growth factor receptor 3 to assess how mutations in the TM region (G380R and A391E), which lead to receptor activation, influence the orientation of the TM domain and interactions of the intracellular JM sequence with the membrane surface. On the basis of fluorescence and Fourier transform infrared spectroscopy, we find that both activating mutations change the TM helix tilt angle relative to the membrane normal and release the JM region from the membrane. These results suggest a general mechanism regarding how the TM–JM region functionally bridges the extracellular and intracellular regions for these receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.