Abstract

Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways. In Rat1 and Balb/c3T3 fibroblasts and in neurons the IGF-I receptor is coupled to an inhibitory G protein, G(i), which mediates G(beta)gamma-dependent MAP kinase activation. The present study determined whether in normal human intestinal smooth muscle cells the IGF-I receptor activates a heterotrimeric G protein and the role of G protein activation in mediating IGF-I-induced growth. IGF-I elicited IGF-I receptor tyrosine phosphorylation, resulting in the specific activation of G(i2). G(beta)gamma subunits selectively mediated IGF-I-dependent MAP kinase activation; G(alpha)i2 subunits selectively mediated IGF-I-dependent inhibition of adenylyl cyclase activity. IGF-I-stimulated MAP kinase activation and growth were inhibited by pertussis toxin, an inhibitor of G(i)/G(o) activation. Cyclic AMP inhibits growth of human intestinal muscle cells. IGF-I inhibited both basal and forskolin-stimulated cAMP levels. This inhibition was attenuated in the presence of pertussis toxin. IGF-I stimulated phosphatidylinositol 3-kinase activation, in contrast to MAP kinase activation, occurred independently of G(i2) activation. These data suggest that IGF-I specifically activates G(i2), resulting in concurrent G(beta)gamma-dependent stimulation of MAP kinase activity and growth, and G(alpha)i2-dependent inhibition of cAMP levels resulting in disinhibition of cAMP-mediated growth suppression.

Highlights

  • Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways

  • To determine whether PTxsensitive growth elicited by Insulin-like growth factor (IGF)-I was mediated by activation of the MAP kinase-dependent or the PI 3-kinase-dependent pathways, cells were incubated with the MAP kinase kinase inhibitor PD98059 (10 ␮M) or the PI 3-kinase inhibitor LY294002 (10 ␮M)

  • These results suggest that the portion of IGF-I-induced growth mediated by activation of the MAP kinase pathway was sensitive to pertussis toxin (PTx), whereas the portion mediated by activation of the PI 3-kinase pathway was insensitive to PTx

Read more

Summary

Introduction

Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways. In Rat1 fibroblasts IGF-I activates a pertussis toxin (PTx)sensitive heterotrimeric G protein leading to G␤␥-mediated, Ras-dependent MAP kinase stimulation [13].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.