Abstract

The Common Land Model (CLM), which results from a 3-yr joint effort among seven land modeling groups, has been coupled with the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Two 15-yr simulations of CCM3 coupled with CLM and the NCAR Land Surface Model (LSM), respectively, are used to document the relative impact of CLM versus LSM on land surface climate. It is found that CLM significantly reduces the summer cold bias of surface air temperature in LSM, which is associated with higher sensible heat fluxes and lower latent heat fluxes in CLM, and the winter warm bias over seasonally snow-covered regions, especially in Eurasia. CLM also significantly improves the simulation of the annual cycle of runoff in LSM. In addition, CLM simulates the snow mass better than LSM during the snow accumulation stage. These improvements are primarily caused by the improved parameterizations in runoff, snow, and other processes (e.g., turbulence) in CLM. The new land boundary data (e.g., leaf-area index, fractional vegetation cover, albedo) also contribute to the improvement in surface air temperature simulation over some regions. Overall, CLM has little impact on precipitation and surface net radiative fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.