Abstract
As an important source of atmospheric methane, methane emissions from coastal wetlands are affected by many factors. However, the methane emission process and interrelated coupling mechanisms in coastal wetland soils of a variety of environments remain unclear owing to complex interactions between intensified anthropogenic activities and climate change in recent years. In this study, we investigated methane cycling processes and the response mechanisms of environmental and microbial factors in soils at different depths under four typical coastal wetland vegetation types of the Yellow River Delta, China, using laboratory culture and molecular biology techniques. Our results show that methane generation pathways differed among the different soil layers, and that the methane emission process has a special response to soil N compounds (NO3−, NH4+). We found that nitrogen can indirectly affect methane emission by impacting key physicochemical properties (pH, oxidation reduction potential, etc.) and some functional communities (mcrA, ANME-2d, sulfate-reducing bacteria (SRB), narG, nosZII). Methane production processes in shallow soils compete closely with sulfate reduction processes, while methane emissions facilitated in deeper soils due to denitrification processes. We believe that our results provide a reference for future research and wetland management practices that seek to mitigate the global greenhouse effect and climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.