Abstract

Radiation and corrosion can be coupled to each other in non-trivial ways and such coupling is of critical importance for the performance of materials in extreme environments. However, it has been rarely studied in ceramics and therefore it is not well understood to what extent these two phenomena are coupled and by what mechanisms. Here, we discover that radiation-induced chemical changes at grain boundaries of ceramics can have a significant (and positive) impact on the corrosion resistance of these materials. Specifically, we demonstrate using a combination of experimental and simulation studies that segregation of C to grain boundaries of silicon carbide leads to improved corrosion resistance. Our results imply that tunning of stoichiometry at grain boundaries either through the sample preparation process or via radiation-induced segregation can provide an effective method for suppressing surface corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.