Abstract

We made use of a homologous cell-free mitochondrial protein import system derived from the yeast Saccharomyces cerevisiae to investigate the coupling of protein synthesis and import. Mitochondrial precursor proteins were synthesized in a yeast lysate either in the presence or absence of isolated yeast mitochondria. We were, therefore, able to analyze protein import into mitochondria either in a strictly posttranslational reaction (when isolated mitochondria were added only after protein synthesis has been arrested by the addition of cycloheximide) or in a reaction in which synthesis and import were permitted to occur simultaneously. We found that the import of a precursor protein consisting of the amino-terminal mitochondrial targeting sequence of cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase is very inefficient in a strictly posttranslational reaction, whereas efficient import is observed if precursor synthesis and import are coupled. The same result was obtained when we analyzed the import of bulk endogenous yeast mitochondrial proteins in this system. Finally, we found that the insertion of the yeast outer membrane protein porin is also several times more efficient when synthesis and insertion are coupled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.