Abstract

On-chip light sources are an essential component of scalable photonic integrated circuits (PICs), and coupling between light sources and waveguides has attracted a great deal of attention. Photonic waveguides based on bound states in the continuum (BICs) allow optical confinement in a low-refractive-index waveguide on a high-refractive-index substrate and thus can be employed for constructing PICs. In this work, we experimentally demonstrated that the photoluminescence (PL) from a monolayer of tungsten sulfide (WS2) could be coupled into a BIC waveguide on a lithium-niobate-on-insulator (LNOI) substrate. Using finite-difference time-domain simulations, we numerically obtained a coupling efficiency of ∼2.3% for an in-plane-oriented dipole and a near-zero loss at a wavelength of 620 nm. By breaking through the limits of 2D-material integration with conventional photonic architectures, our work offers a new perspective for light-matter coupling in monolithic PICs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.