Abstract

The impact of the intrinsic curvature of in-plane orientationally ordered curved flexible nematic molecules attached to closed 3D flexible shells was studied numerically. A Helfrich-Landau-de Gennes-type mesoscopic approach was adopted where the flexible shell’s curvature field and in-plane nematic field are coupled and concomitantly determined in the process of free energy minimisation. We demonstrate that this coupling has the potential to generate a rich diversity of qualitatively new shapes of closed 3D nematic shells and the corresponding specific in-plane orientational ordering textures, which strongly depend on the shell’s volume-to-surface area ratio, so far not predicted in mesoscopic-type numerical studies of 3D shapes of closed flexible nematic shells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call