Abstract

With the goal of cost-effective and high-efficient microalgae-based biodiesel production, this study evaluated the feasibility of the joint strategy concerning myo-inositol (MI) and salinity stress on lipid productivity of Monoraphidium sp. QLY-1 in molasses wastewater (MW). The maximal lipid productivity (147.79 mg L−1 d−1) was obtained under combined 0.5 g L−1 MI and 10 g L−1 NaCl treatment, which was 1.40-fold higher than the control. Meanwhile, the nutrients removal from MW was markedly increased under MI-NaCl treatment. Moreover, exogenous MI upregulated key lipogenic genes' expressions, activated autophagic activity and ethylene (ET) signaling, and ultimately alleviated the salinity-induced damage via reactive oxygen species (ROS) signaling. Further pharmacologic experiment confirmed the indispensable role of ET in the lipogenesis progress under the combined treatment. These data demonstrated the combined salinity stress and MI treatment to be capable for lipid hyperproduction and wastewater nutrients removal, which contributes to practically integrating the microalgae cultivation with wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call