Abstract

An accurate and self-consistent methodology for mass transport of multi-component mixtures in multi phase media is a necessity for a proper description of complex physical and chemical processes in reactors such as catalytic packed beds. In this regard, a novel methodology has been developed to describe and couple underlying transport phenomena in fluid and porous media as well as at the solid-fluid interface. The methodology is symmetric as it treats all components in a mixture equally. The Maxwell-Stefan equations are symmetrically formulated, discretized conservatively and coupled with a compressible flow solver for the fluid part. The Dusty Gas Model is applied inside porous media by developing a self-consistent and robust numerical formulation. A ghost-cell Immersed Boundary Method is used to capture the physics at the solid-fluid interface with the implementation of a novel symmetric non-singular mass flux formulation. Several test cases are established to demonstrate the accuracy and robustness of the newly developed symmetric methodology in this paper. These test cases can be used as benchmark for the future development of symmetric methodologies for multicomponent systems in multi phase media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.