Abstract
AbstractThe theory for coupling of mapped wave infinite elements and special wave finite elements for the solution of the Helmholtz equation in unbounded domains is presented. Mapped wave infinite elements can be applied to boundaries of arbitrary shape for exterior wave problems without truncation of the domain. Special wave finite elements allow an element to contain many wavelengths rather than having many finite elements per wavelength like conventional finite elements. Both types of elements include trigonometric functions to describe wave behaviour in their shape functions. However the wave directions between nodes on the finite element/infinite element interface can be incompatible. This is because the directions are normally globally constant within a special finite element but are usually radial from the ‘pole’ within a mapped wave infinite element. Therefore forcing the waves associated with nodes on the interface to be strictly radial is necessary to eliminate this internode incompatibility. The coupling of these elements was tested for a Hankel source problem and plane wave scattering by a cylinder and good accuracy was achieved. This paper deals with unconjugated infinite elements and is restricted to two‐dimensional problems. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.