Abstract

A typical polymer electrolyte fuel cell (PEFC) flow field consists of micro/minichannels. The continues removal of liquid water from the cathode channels is a critical topic, as water droplets forming in the channels may block the transport of gaseous oxygen to the active sites, which not only gives an uneven current distribution and substantial loss of performance, but also, increases degradation rates and unstable operation. Water generated by the electrochemical reactions condenses, depending on temperature mainly, into liquid form, potentially flooding various part of the PEFC. The aim of this work is to obtain an increased understanding of the droplet behavior, especially at the gas diffusion layer (GDL) interface, by the coupling of Lattice Boltzmann (LB) and Volume of Fluid (VOF) approaches, for gas channels in PEFCs. A multiscale environment is established with input parameters in the VOF model being extracted from in-house LB calculations. It is clear that the contact angle as well as the size of the liquid droplet vary with positions at the GDL surface, depending on the stochastic GDL geometry. A VOF model describing one straight channel with one gas inlet, one liquid inlet (at the GDL surface) and one two-phase outlet is employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call