Abstract

We propose a coupling scheme for the three-Josephson junction qubits which uses a connecting loop, but not mutual inductance. Present scheme offers the advantages of a large and tunable level splitting in implementing the controlled-NOT (CNOT) operation. We calculate the switching probabilities of the coupled qubits in the CNOT operations and demonstrate that present CNOT gate can meet the criteria for the fault-tolerant quantum computing. We obtain the coupling strength as a function of the coupling energy of the Josephson junction and the length of the connecting loop which varies with selecting two qubits from the scalable design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.