Abstract

This study is focused on developing a Computational Aeroacoustics (CAA) methodology that couples the near field unsteady flow field data computed by a 3-D Large Eddy Simulation (LES) code with various integral acoustic formulations for the far field noise prediction of turbulent jets. The LES code employs state-of-the-art numerical schemes and a localized version of the dynamic Smagorinsky subgrid-scale (SGS) model. The code also has the capability to turn off the SGS model and treat the spatial filter that is needed for numerical stability as an implicit SGS model. Noise computations performed for a Mach 0.9, Reynolds number 400,000 jet using various integral acoustic results are presented and the results are compared against each other as well with those from experiments at similar flow conditions. Our results show that the surface integral acoustics methods (Kirchhoff and Ffowcs Williams - Hawkings) give similar results to the volume integral method (Lighthill's acoustic analogy) at a much lower cost. To the best of our knowledge, Lighthill's acoustic analogy is applied to a Reynolds number 400,000 jet at Mach 0.9 for the first time in this study. The distribution of Lighthill sources that radiate noise in the direction of various observer locations is evaluated. A source decomposition shows significant cancellations among the individual components of the Lighthill source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call