Abstract

High Knudsen number non-ideal gas flows in porous media are important and fundamental in various applications including shale gas exploitation and carbon dioxide sequestration. Because of the small pore size in tight rocks, the Knudsen number (Kn) may be high (i.e. much higher than 0.01) even though the gas is really dense. In fact, due to the high pressure and temperature underground, the gas usually manifests a strong non-ideal gas effect. Understanding the coupling mechanism of the high Kn effect and non-ideal gas effect is a premise to accurately model deep-seated underground gas exploitation or carbon dioxide sequestration. In this work, we theoretically analyse the high Kn non-ideal gas flows in microporous media. Based on the relative importance of the non-ideal gas effect and high Kn effect, the coupling is divided into four types. The analysis is subsequently validated by multiscale numerical simulations, in which the four types of coupling are clearly demonstrated. After applying the analysis to laboratory measurements, we propose a characteristic pressure model to calculate the gas permeability of tight rocks with better precision. The new model incorporates the non-ideal gas effect with the high Kn effect accurately and better bridges the laboratory measurements with the reservoir engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.