Abstract

Persistent scatterer interferometry (PSI) is capable of millimetric measurements of ground deformation phenomena occurring at radar signal reflectors (persistent scatterers, PS) that are phase coherent over a period of time. However, there are also limitations to PSI; significant phase decorrelation can occur between subsequent interferometric radar (InSAR) acquisitions in vegetated and low-density PS areas. Here, artificial amplitude- and phase-stable radar scatterers may have to be introduced. I2GPS was a Galileo project (02/2010–09/2011) that aimed to develop a novel device consisting of a compact active transponder (CAT) with an integrated global positioning system (GPS) antenna to ensure millimetric co-registration and a coherent cross-reference. The advantages are: (1) all advantages of CATs such as small size, light weight, unobtrusiveness and usability with multiple satellites and tracks; (2) absolute calibration for PSI data; (3) high sampling rate of GPS enables detection of abrupt ground motion in 3D; and (4) vertical components of the local velocity field can be derived from single-track InSAR line-of-sight displacements. A field trial was set to test the approach at a potential landslide site in Potoska planina, Slovenia to evaluate the applicability for operational monitoring of natural hazards. Preliminary results from the trial highlight some of the key considerations for operational deployments in the field. Ground motion measurements also allowed an assessment of landslide hazard at the site and demonstrated the synergies between InSAR and GPS measurements for landslide applications. InSAR and GPS measurements were compared to assess the consistency between the methods from the slope mass movement detection aspect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.