Abstract
We have developed a novel wide-pore scaffold for cell 3D culturing, based on the technology of freeze-drying of Ca-alginate and gelatin. Two different preparation methodologies were compared: (i) freeze-drying of Na-alginate + gelatin mixed solution followed by the incubation of dried polymer in saturated ethanolic solution of CaCl₂; (ii) freeze-drying of the Na-alginate solution followed by the chemical "activation" of polysaccharide core with divinylsulfone with subsequent gelatin covalent attachment to the inner surfaces of pore walls. The scaffolds produced using the first approach did not provide adhesion and proliferation of human bone marrow mesenchymal stromal cells (MSCs). Conversely, the second approach allowed to obtain scaffolds with a high adherence ability for the cells. When cultured within the latter type of scaffold, MSCs proliferated and were able to differentiate into adipogenic, osteogenic and chondrogenic cell lineages, in response to specific induction stimuli. The results indicate that Ca-alginate wide-pore scaffolds with covalently attached gelatin could be useful for stem cell-based bone, cartilage and adipose tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.