Abstract
The present work describes results obtained on hybrid systems formed in aqueous buffer solution by self-assembly of different CdSe quantum dots (QDs) surrounded by a ZnS shell and functionalized by covering the surface with anionic and cationic groups and various isolated pigment–protein complexes from the light-harvesting antennae of photosynthetic organisms (light-harvesting complexes 1 and 2 (LH1 and LH2, respectively) from purple bacteria, phycobiliproteins (PBPs) from cyanobacteria and the rod-shaped PBP from the cyanobacterium Acaryochloris marina). Excitation energy transfer (EET) from QDs to PBP rods was found to take place with varying and highly temperature-dependent efficiencies of up to 90%. Experiments performed at room temperature on hybrid systems with different QDs show that no straightforward correlation exists between the efficiency of EET and the parameter J/(R126) given by the theory of Förster resonance energy transfer (FRET), where J is the overlap integral of the normalized QD emission and PBP absorption and R12 the distance between the transition dipole moments of donor and acceptor. The results show that the hybrid systems cannot be described as randomly orientated aggregates consisting of QDs and photosynthetic pigment–protein complexes. Specific structural parameters are inferred to play an essential role. The mode of binding and coupling seems to change with the size of QDs and with temperature. Efficient EET and fluorescence enhancement of the acceptor was observed at particular stoichiometric ratios between QDs and trimeric phycoerythrin (PE). At higher concentrations of PE, a quenching of its fluorescence is observed in the presence of QDs. This effect is explained by the existence of additional quenching channels in aggregates formed within hybrid systems. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.