Abstract
Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0–50 μM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.