Abstract

The specific interaction of muscle type creatine-kinase (MM-CK) with the myofibrillar M-line was demonstrated by exchanging endogenous MM-CK with an excess of fluorescently labeled MM-CK in situ, using chemically skinned skeletal muscle fibers and confocal microscopy. No binding of labeled MM-CK was noticed at the I-band of skinned fibers, where the enzyme is additionally located in vivo, as shown earlier by immunofluorescence staining of cryosections of intact muscle. However, when rhodamine-labeled MM-CK was diffused into skinned fibers that had been preincubated with phosphofructokinase (PFK), a glycolytic enzyme known to bind to actin, a striking in vivo-like interaction of Rh-MM-CK with the I-band was found, presumably mediated by binding of Rh-MM-CK to the glycolytic enzyme. Aldolase, another actin-binding glycolytic enzyme was also able to bind Rh-MM-CK to the I-band, but formation of the complex occurred preferably at long sarcomere length (> 3.0 microm). Neither pyruvate kinase, although known for its binding to actin, nor phosphoglycerate kinase (PGK), not directly interacting with the I-band itself, did mediate I-band targeting of MM-CK. Anchoring of MM-CK to the I-band via PFK, but not so via aldolase, was strongly pH-dependent and occurred below pH 7.0. Labeling performed at different sarcomere length indicated that the PFK/MM-CK complex bound to thin filaments of the I-band, but not within the actomyosin overlap zones. The physiological consequences of the structural interaction of MM-CK with PFK at the I-band is discussed with respect to functional coupling of MM-CK to glycolysis, metabolic regulation and channeling in multi-enzyme complexes. The in situ binding assay with skinned skeletal muscle fibers described here represents a useful method for further studies of specific protein-protein interactions in a structurally intact contractile system under various precisely controlled conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.