Abstract
Zero-field-cooling and field-cooling (FC) measurements were performed on ferrofluids of cobalt magnetic nanoparticles (MNPs) in various organic solvent. Two peaks, one broad peak corresponding to the blocking transition (TB), and one sharp peak corresponding to the melting of the solvent (TM), were observed. Furthermore, for a given MNP size, when the blocking and melting transitions were superposed by choosing an appropriate solvent, the strongest intensity of the sharp peak at the melting point of the organic solvent was obtained. This observation is explained by applying the M spectrum theory. Additionally, a first order, melting-induced magnetic phase transformation was observed at the melting point of the solvent. Associated with the first order phase transition and the supercooling effect, a thermal hysteresis loop in the FC curve was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.