Abstract

We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity--waveguide coupling system, and find that it plays a significant role in the photon transportation. On one hand, this study provides a new insight into future solid-state cavity quantum electrodynamics toward strong coupling physics. On the other hand, benefitting from this Rayleigh scattering, novel photon transportation such as dipole induced transparency and strong photon antibunching can occur simultaneously. As potential applications, this system can function as high-efficiency photon turnstiles. In contrast to [B. Dayan \textit{et al.}, \textrm{Science} \textbf{319},1062 (2008)], the photon turnstiles proposed here are highly immune to nanocrystal's azimuthal position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call