Abstract
Myocardial β-adrenergic receptor (β-AR) β1- and β2-subtypes are highly homologous, but play opposite roles in cardiac apoptosis and heart failure, as do cardiac adenylyl cyclase (AC) subtypes 5 (AC5) and 6 (AC6): β1-AR and AC5 promote cardiac remodeling, while β2-AR and AC6 activate cell survival pathways. However, the mechanisms involved remain poorly understood. We hypothesized that AC5 is coupled preferentially to β1-AR rather than β2-AR, and we examined this idea by means of pharmacological and genetic approaches. We found that selective inhibition of AC5 with 2′5′-dideoxyadenosine significantly suppressed cAMP accumulation and cardiac apoptosis induced by selective β1-AR stimulation, but had no effect on cAMP accumulation and cardiac apoptosis in response to selective β2-AR stimulation. The results of selective stimulation of β1-AR and β2-AR in neonatal cardiac myocytes prepared from wild-type and AC5-knockout mice were also consistent with the idea that β1-AR selectively couples with AC5. We believe these results are helpful for understanding the mechanisms underlying the different roles of AR subtypes in healthy and diseased hearts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.