Abstract

Bacterial cell wall peptidoglycan is essential for viability, and its synthesis is targeted by antibiotics, including penicillin. To determine how peptidoglycan homeostasis controls cell architecture, growth, and division, we have developed novel labeling approaches. These are compatible with super-resolution fluorescence microscopy to examine peptidoglycan synthesis, hydrolysis, and the localization of the enzymes required for its biosynthesis (penicillin binding proteins (PBPs)). Synthesis of a cephalosporin-based fluorescent probe revealed a pattern of PBPs at the septum during division, supporting a model of dispersed peptidoglycan synthesis. Metabolic and hydroxylamine-based probes respectively enabled the synthesis of glycan strands and associated reducing termini of the peptidoglycan to be mapped. Foci and arcs of reducing termini appear as a result of both synthesis of glycan strands and glucosaminidase activity of the major peptidoglycan hydrolase, SagB. Our studies provide molecular level details of how essential peptidoglycan dynamics are controlled during growth and division.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.