Abstract
A 3-D multiple-stacked IC has been proposed to support energy efficiency for data center operations as dynamic RAM (DRAM) scaling improves annually. 3-D multiple-stacked IC is a single package containing multiple dies, stacked together, using through-silicon via (TSV) technology. Despite the advantages of 3-D design, fault occurrence rate increases with feature-size reduction of logic devices, which gets worse for 3-D stacked designs. TSV coupling is one of the main reliability issues for 3-D multiple-stacked IC data TSVs. It has large disruptive effects on signal integrity and transmission delay. In this paper, we first characterize the inductance parasitics in contemporary TSVs, and then we analyze and present a classification for inductive coupling cases. Next, we devise a coding algorithm to mitigate the TSV-to-TSV inductive coupling. The coding method controls the current flow direction in TSVs by adjusting the data bit streams at run time to minimize the inductive coupling effects. After performing formal analyses on the efficiency scalability of devised algorithm, an enhanced approach supporting larger bus sizes is proposed. Our experimental results show that the proposed coding algorithm yields significant improvements, while its hardware-implemented encoder results in tangible latency, power consumption, and area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.