Abstract

AbstractAnoxic slurry incubations were performed to examine the relationship between mercury methylation rates (MMR) and sulfate reduction rates (SRR) in salt marsh sediments from the southeastern United States. The MMR and SRR were similarly affected by temperature, addition of low‐weight molecular organics, and microbial inhibitors. The MMR was at a maximum in the 12 h after inorganic mercury addition. Initial rates of Hg methylation are correlated with SRR. A significantly slower MMR observed after the initial 12 h following inorganic mercury addition suggested that sorption or precipitation reduced the availability of mercury for methylation. The MMR results for various concentrations of inorganic mercury indicate that saturation kinetics occur. Using this kinetic framework, a model for MMR based on SRR and inorganic Hg concentration was developed. This model was then used to predict the MMR reported in temperature and substrate/inhibitor experiments. The model provided a reasonable estimate of MMR observed in the initial 12 h of the slurry incubations. However, the sequestering of inorganic mercury into less reactive pools by sorption to surfaces or incorporation into other phases alters the amount of bioavailable Hg and hence MMR. Future models that assess the bioavailibility of Hg in the sediments must be developed to extend these observations to field sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.