Abstract

We present a methodology to assess slender beams by means of highly nonlinear solitary waves. This is accomplished by understanding the coupling mechanism between highly nonlinear solitary waves propagating along a granular system and a beam in contact with the granular medium. Nonlinear solitary waves are compact non-dispersive waves that can form and travel in nonlinear systems such as one-dimensional chains of particles. In the study presented in this paper, the waves are generated by the mechanical impact of a striker and are detected by means of sensor beads located along the chain. We investigated numerically and experimentally the effect on the solitary waves of slender beams of different modulus, length, boundary condition, and axial stress. We found that the geometric and mechanical properties of the beam or thermal stress applied to the beam alter certain features of the solitary waves. In the future, these findings may be used to develop a novel sensing system for the Nondestructive Evaluation of beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.